Fall 2021

Laboratory 3

(Due date: **004/011**: Oct. 12th, **005**: Oct. 13th, **007**: Oct. 14th)

OBJECTIVES

- ✓ Use the Structural Description on VHDL.
- ✓ Test arithmetic circuits on an FPGA.

VHDL CODING

✓ Refer to the <u>Tutorial: VHDL for FPGAs</u> for a list of examples.

FIRST ACTIVITY (100/100)

DESIGN PROBLEM

 The figure depicts an array multiplier for two 4-bit unsigned numbers. It is a straightforward implementation based on adding two partial products (rows) at each stage.

PROCEDURE

• Vivado: Complete the following steps:

- ✓ Create a new Vivado Project. Select the corresponding Artix-7 FPGA device (e.g.: the XC7A50T-1CSG324 FPGA device for the Nexys A7-50T).
- ✓ Write the VHDL code for this unsigned array multiplier. <u>Synthesize</u> your code.
 - Use the Structural Description: Create a separate .vhd file for the Full Adder, the Processing Unit (PU), and the top file (Array Multiplier).
- ✓ Write the VHDL testbench to test the circuit for all possible cases (256 cases). Use 'for loop'.
- ✓ Perform <u>Functional Simulation</u> and <u>Timing Simulation</u> of your design. **Demonstrate this to your TA**.
 - Your simulation might need more time than Vivado Simulator's default (1 us). For example, to add 5 us, you can go to the TCL console and type: run 5 us d
 - Note that you can represent your data as unsigned integers (use $Radix \rightarrow Unsigned Decimal$).

- ✓ I/O Assignment: Generate the XDC file associated with your board.
 - Suggestion:

Board pin names	SW7	SW6	SW5	SW4	SW3	SW2	SW1	SWO	LED7	LED6	LED5	LED4	LED3	LED2	LED1	led0
Signal names in code	A_3	\mathbb{A}_2	A_1	A_0	B ₃	B_2	B_1	B ₀	P ₇	P ₆	P_5	\mathbb{P}_4	P ₃	P ₂	P ₁	P ₀

- The board pin names are used by all the listed boards (Nexys A7-50T/A7-100T, Basys 3, Nexys 4/DDR). The I/Os listed here are all active high.
- ✓ Generate and download the bitstream on the FPGA and test. **Demonstrate this to your TA**.
- Submit (<u>as a .zip file</u>) the five generated files: VHDL code (3 files), VHDL testbench, and XDC file to Moodle (an assignment will be created). DO NOT submit the whole Vivado Project.
 - ✓ Your .zip file should only include one folder. Do not include subdirectories.
 - It is strongly recommended that all your design files, testbench, and constraints file be located in a single directory. This will allow for a smooth experience with Vivado.

1a	b3	
	PU.vhd	Design files
	fa.vhd	-
		Testbench file
	lab3.xdc	Constraints file

TA signature: _____

Date: _____